China Blazing Trail in Thorium Reactors
THE Chinese are running away with thorium energy, sharpening a global race for the prize of clean, cheap, and safe nuclear power.
Jiang Mianheng, son of former leader Jiang Zemin, is spearheading a project for China’s National Academy of Sciences with a start-up budget of $350m. He has already recruited 140 PhD scientists, working full-time on thorium power at the Shanghai Institute of Nuclear and Applied Physics. He will have 750 staff by 2015.
The aim is to break free of the archaic pressurized-water reactors fueled by uranium — originally designed for US submarines in the 1950s — opting instead for new generation of thorium reactors that produce far less toxic waste and cannot blow their top like Fukushima.
“China is the country to watch,” said Baroness Bryony Worthington, head of the All-Parliamentary Group on Thorium Energy, who visited the Shanghai operations recently with a team from Britain’s National Nuclear Laboratory. “They are really going for it, and have talented researchers. This could lead to a massive break-through.”
The thorium story is by now well-known. Enthusiasts think it could be the transforming technology needed to drive the industrial revolutions of Asia — and to avoid an almighty energy crunch as an extra two billion people climb the ladder to western lifestyles. At the least, it could do for nuclear power what shale fracking has done for natural gas — but on a bigger scale, for much longer, perhaps more cheaply, and with near zero CO2 emissions.
The Chinese are leading the charge, but they are not alone. Norway’s Thor Energy began a four-year test last month with Japan’s Toshiba-Westinghouse to see whether they could use thorium at Norway’s conventional Halden reactor in Oslo. The Japanese are keen to go further, knowing they have to come up with something radically new to regain public trust and save their nuclear industry. Japan’s International Institute for Advanced Studies (IIAS) — now led by thorium enthusiast Takashi Kamei — is researching molten salt reactors that use liquid fuel.
The Chinese aim to beat them to it. Technology for the molten salt process already exists. The Oak Ridge National Laboratory in Tennessee built such a reactor in the 1960s. It was shelved by the Nixon Administration. The Pentagon needed plutonium residue from uranium to build nuclear bombs. The imperatives of the Cold War prevailed.
The thorium blueprints gathered dust in the archives until retrieved and published by former Nasa engineer Kirk Sorensen. The US largely ignored him: China did not. Mr Jiang visited the Oak Ridge labs and obtained the designs after reading an article in the American Scientist two years ago extolling thorium. His team concluded that a molten salt reactor — if done the right way — may answer China’s prayers. Mr Jiang says China’s energy shortage is becoming “scary” and will soon pose a threat to national security.
His mission is to do something about China’s Achilles Heel very fast. The Shanghai team plans to build a tiny 2 MW plant using liquid flouride fuel by the end of the decade, before scaling up to commercially viable size over the 2020s. It is also working on a pebble-back reactor. He estimates that China has enough thorium to power its electricity needs for “20,000 years”. So does the world. The radioactive mineral is scattered across Britain. The Americans have buried tonnes of it, a hazardous by-product of rare earth metal mining. China is already building 26 conventional reactors by 2015, with a further 51 planned, and 120 in the pipeline, but these have all the known drawbacks, and rely on imported uranium.
The beauty of thorium is that you cannot have a Fukushima disaster. Professor Robert Cywinksi from Huddersfield University, who anchor’s the UK’s thorium research network ThorEA, said the metal must be bombarded with neutrons to drive the process. “There is no chain reaction. Fission dies the moment you switch off the photon beam,” he said. His team is working on an accelerator driven subcritical reactor. “Peope are beginning to realize that uranium isn’t sustainable. We’re going to have to breed new nuclear fuel. If we are going to the trouble of breeding, we could start to use thorium instead, without introducing plutonium into the cycle,” he said.
Thorium has its flaws. The metallurgy is complex. It is “fertile” but not fissile, and has to be converted in Uranium 233. Claims by the International Atomic Energy Institute in 2005 that it has “intrinsic resistance” to proliferation but have since been qualified. It could be used as feedstock for bombs, though not easily. Yet it leaves far less toxic residue. Most of the mineral is used up in the fission process, while uranium reactors use up just 0.7pc. It can even burn up existing stockpiles of plutonium and hazardous waste.
– The Telegraph
0 Comments
Trackbacks/Pingbacks